

Mathematics Specialist Units 3,4 Test 3 2019

Calculator Assumed Vector Calculus

STUDENT'S NAME

DATE: Wednesday 15th May

TIME: 55 minutes

MARKS: 54

INSTRUCTIONS:

Standard Items: Special Items: Pens, pencils, drawing templates, eraser Three calculators, notes on one side of a single A4 page (these notes to be handed in with this assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

Intentional blank page

1. (12 marks)

Consider the following system of equations:

x + y + z = 2 x + 2y + (k-5)z = 2 $3x + 2y + (k^{2} + 3)z = k + 9$

(a) Represent this system as an augmented matrix and reduce it to row-echelon form. [3]

(b)	Determine the value/s of k for which the system will have		
	(i)	no solution	[3]
	(ii)	a unique solution	[2]
	(iii)	infinitely many solutions	[2]

(c) For the value of k obtained in (b)(iii), explain why the system of equations has infinitely many solutions. [2]

2. (10 marks)

As part of a stunt in a movie, a car is driven off a cliff 80 metres high at a horizontal speed of 20 m/sec. Assume acceleration due to gravity is 9.8 m/sec². Determine each of the following using vector calculus:

[4]
[2]
F 4 J
[1]
[2]
[1]

3. (20 marks)

The position of a small body at any time *t* seconds is given by

$$\mathbf{r}(t) = 24\sin\left(\frac{\pi t}{6}\right)\mathbf{i} + 24\cos\left(\frac{\pi t}{6}\right)\mathbf{j}, \ t \ge 0.$$

- (a) Determine an expression for the velocity v(t) of the body. [2]
- (b) What is the speed of the body when t = 4, and what angle to the *x*-axis is the body moving at this instant? [4]

(c) Determine the distance of the body from (0,0) at any time t, and interpret this result in terms of the path described by the body. [3]

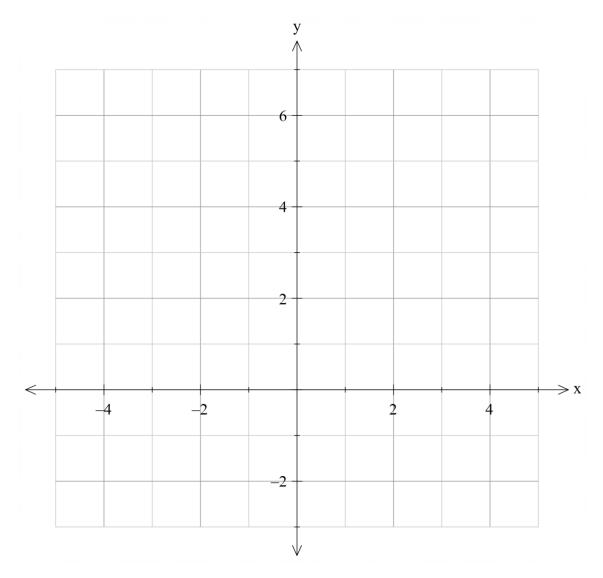
(d) Using the result of (c), determine the direction of movement of the body. [2]

(e) Determine $r(t) \bullet v(t)$

[2]

(g) Determine
$$\int_0^2 v(t) dt$$
 and interpret the answer. [3]

(h) Explain why
$$\int_0^T |v(t)| dt > \int_0^T v(t) dt$$
 for all $T > 0.$ [2]


4. (12 marks)

The acceleration of a particle at time t seconds is given by a(t) = -4i + 2tj, where distances are measured in centimetres. At t = 0 the particle is at the origin and has a velocity v(t) = 2i + j

(a) Determine the velocity of the particle when t = 2 [2]

(b) Determine the position of the particle when it is moving parallel to the vertical axis [4]

(c) Explain why the particle can never move parallel to the horizontal axis [2]

(e) On the axes above sketch v(0.5)

[2]